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Abstract

Using the generalized Lipatov-Altarelli-Parisi-Dokshitzer equations for the two-parton
distribution functions we show numerically that the dynamical correlations contribute to
these functions quite a lot in comparison with the factorized components. At the scale
of CDF hard process (∼ 5 GeV) this contribution to the double gluon-gluon distribution
is nearly 10% and increases right up to 30% at the LHC scale (∼ 100 GeV) for the
longitudinal momentum fractions x ≤ 0.1 accessible to these measurements. For the finite
longitudinal momentum fractions x ∼ 0.2÷ 0.4 the correlations are large right up to 90%
in accordance with the predicted QCD asymptotic behaviour.
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Recent CDF measurements [1] of the inclusive cross section for double parton scattering

have provided new and complementary information on the structure of the proton and possible

parton-parton correlations. Both the absolute rate for the double parton process and any

dynamics that correlations may introduce are therefore of interest. The possibility of observing

two separate hard collisions has been proposed since long [2, 3], and from that has also developed

in a number of works [4, 5, 6, 7, 8, 9, 10, 11]. The Tevatron and specially LHC allow us to

obtain huge data samples of these multiple interactions and to answer to many challenging

questions of yet poorly-understood aspects of QCD. A brief review of the current situation and

some progress in the modeling account of correlated flavour, colour, longitudinal and transverse

momentum distributions can be found in ref. [12]. Multiple interactions require an ansatz for the

structure of the incoming beams, i.e. correlations between the constituent partons. As a simple

ansatz, usually, the two-parton distributions are supposed to be the product of two single-parton

distributions times a momentum conserving phase space factor. In recent paper [13] it has been

shown that this hypothesis is in some contradiction with the leading logarithm approximation

of perturbative QCD (in the framework of which a parton model, as a matter of fact, was

established in the quantum field theories [14, 15, 16]). Namely, the two-parton distribution

functions being the product of two single distributions at some reference scale become to be

dynamically correlated at any different scale of a hard process. The value of these correlations

in comparison with the factorized components is the main purpose of this Letter.

In order to be clear and to introduce the denotations let us recall that, for instance, the

differential cross section for the four-jet process (due to the simultaneous interaction of two

parton pairs) is given by [6, 7]

dσ =
∑

q/g

dσ12 dσ34

σeff
Dp(x1, x3) Dp̄(x2, x4), (1)

where dσij stands for the two-jet cross section. The dimensional factor σeff in the denominator

represents the total inelastic cross section which is an estimate of the size of the hadron,

σeff ≃ 2πr2
p (the factor 2 is introduced due to the identity of the two parton processes).

With the effective cross section measured by CDF, (σeff )CDF = (14.5 ± 1.7+1.7
−2.3) mb [1], one

can estimate the transverse size rp ≃ 0.5 fm, which is too small in comparison with the

proton radius Rp extracted from ep elastic scattering experiments. The relatively small value

of (σeff)CDF with respect to the naive expectation 2πR2
p was, in fact, considered [9, 10] as

evidence of nontrivial correlation effects in transverse space. But, apart from these correlations,

the longitudinal momentum correlations can also exist and they were investigated in ref. [13].

The factorization ansatz is just applied to the two-parton distributions incoming in eq. (1):

Dp(xi, xj) = Dp(xi, Q
2) Dp(xj , Q

2) (1 − xi − xj), (2)
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where Dp(xi, Q
2) are the single quark/gluon momentum distributions at the scale Q2 (deter-

mined by a hard process).

However many parton distribution functions satisfy the generalized Lipatov-Altarelli-Parisi-

Dokshitzer evolution equations derived for the first time in refs [17, 18] as well as single parton

distributions satisfy more known and cited Altarelli-Parisi equations [15, 16, 19]. Under certain

initial conditions these generalized equations lead to solutions, which are identical with the jet

calculus rules proposed originally for multiparton fragmentation functions by Konishi-Ukawa-

Veneziano [20] and are in some contradiction with the factorization hypothesis (2). Here one

should note that at the parton level this is the strict assertion within the leading logarithm

approximation.

After introducing the natural dimensionless variable

t =
1

2πb
ln

[

1 +
g2(µ2)

4π
b ln

(

Q2

µ2

)]

=
1

2πb
ln

[ ln( Q2

Λ2

QCD

)

ln( µ2

Λ2

QCD

)

]

, b =
33 − 2nf

12π
in QCD,

where g(µ2) is the running coupling constant at the reference scale µ2, nf is the number of active

flavours, ΛQCD is the dimensional QCD parameter, the Altarelli-Parisi equations read [15, 16,

19]

dDj
i (x, t)

dt
=
∑

j′

1
∫

x

dx′

x′
Dj′

i (x′, t)Pj′→j

(

x

x′

)

. (3)

They describe the scaling violation of the parton distributions Dj
i (x, t) inside a dressed quark

or gluon (i, j = q/g).

We will not write the kernels P explicitly and derive the generalized equations for two-

parton distributions Dj1j2
i (x1, x2, t), representing the probability that in a dressed constituent i

one finds two bare partons of types j1 and j2 with the given longitudinal momentum fractions

x1 and x2 (referring to [13, 15, 16, 17, 18, 19] for details), we give only their solutions via the

convolution of single distributions [17, 18]

Dj1j2
i (x1, x2, t) = (4)

∑

j′j1′j2′

t
∫

0
dt′

1−x2
∫

x1

dz1

z1

1−z1
∫

x2

dz2

z2

Dj′

i (z1 + z2, t
′) 1

z1+z2

Pj′→j1′j2′

(

z1

z1+z2

)

Dj1
j1′

(x1

z1

, t − t′)Dj2
j2′

(x2

z2

, t − t′).

This convolution coincides with the jet calculus rules [20] as mentioned above and is the gen-

eralization of the well-known Gribov-Lipatov relation installed for single functions [14, 16] (the

distribution of bare partons inside a dressed constituent is identical to the distribution of dressed

constituents in the fragmentation of a bare parton in the leading logarithm approximation).

The solution (4) shows that the distribution of partons is correlated in the leading logarithm
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approximation:

Dj1j2
i (x1, x2, t) 6= Dj1

i (x1, t)D
j2
i (x2, t). (5)

Of course, it is interesting to find out the phenomenological issue of this parton level con-

sideration. This can be done within the well-known factorization of soft and hard stages

(physics of short and long distances) [21]. As a result the equations (3) describe the evolution

of parton distributions in a hadron with t (Q2), if one replaces the index i by index h only.

However, the initial conditions for new equations at t = 0 (Q2 = µ2) are unknown a priori

and must be introduced phenomenologically or must be extracted from experiments or some

models dealing with physics of long distances [at the parton level: Dj
i (x, t = 0) = δijδ(x− 1);

Dj1j2
i (x1, x2, t = 0) = 0]. Nevertheless the solution of the generalized Lipatov-Altarelli-Parisi-

Dokshitzer evolution equations with the given initial condition may be written as before via

the convolution of single distributions [13, 18]

Dj1j2
h (x1, x2, t) = Dj1j2

h(QCD)(x1, x2, t) + (6)

∑

j1′j2′

1−x2
∫

x1

dz1

z1

1−z1
∫

x2

dz2

z2

Dj1′j2′

h (z1, z2, 0)Dj1
j1′

(x1

z1

, t)Dj2
j2′

(x2

z2

, t) ,

where

Dj1j2
h(QCD)(x1, x2, t) = (7)

∑

j′j1′j2′

t
∫

0
dt′

1−x2
∫

x1

dz1

z1

1−z1
∫

x2

dz2

z2

Dj′

h (z1 + z2, t
′) 1

z1+z2

Pj′→j1′j2′

(

z1

z1+z2

)

Dj1
j1′

(x1

z1

, t − t′)Dj2
j2′

(x2

z2

, t − t′)

are the dynamically correlated distributions given by perturbative QCD (compare (4) with (7)).

The reckoning for the unsolved confinement problem (physics of long distances) is the un-

known nonperturbative two-parton correlation function Dj1′j2′

h (z1, z2, 0) at some scale µ2. One

can suppose that this function is the product of two single-parton distributions times a mo-

mentum conserving factor at this scale µ2:

Dj1j2
h (z1, z2, 0) = Dj1

h (z1, 0)Dj2
h (z2, 0)θ(1 − z1 − z2). (8)

Then

Dj1j2
h (x1, x2, t) = Dj1j2

h(QCD)(x1, x2, t) + θ(1 − x1 − x2)
(

Dj1
h (x1, t)D

j2
h (x2, t) + (9)

∑

j1′j2′

1
∫

x1

dz1

z1

1
∫

x2

dz2

z2
Dj1′

h (z1, 0)Dj2′

h (z2, 0)Dj1
j1′

(x1

z1
, t)Dj2

j2′
(x2

z2
, t)[θ(1 − z1 − z2) − 1]

)

,

(10)

where

Dj
h(x, t) =

∑

j′

1
∫

x

dz

z
Dj′

h (z, 0) Dj
j′(

x

z
, t) (11)
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is the solution of eq. (3) with the given initial condition Dj
h(x, 0) for parton distributions inside

a hadron expressed via distributions at the parton level.

This result (9) shows that if the two-parton distributions are factorized at some scale µ2,

then the evolution violates this factorization inevitably at any different scale (Q2 6= µ2), apart

from the violation due to the kinematic correlations induced by the momentum conservation

(given by θ functions)1.

For a practical employment it is interesting to know the degree of this violation. Partly this

problem was investigated theoretically in refs. [18, 23] and for the two-particle correlations of

fragmentation functions in ref. [24]. That technique is based on the Mellin transformation of

distribution functions as

M j
h(n, t) =

1
∫

0

dx xn Dj
h(x, t). (12)

After that the integrodifferential equations (3) become systems of ordinary linear-differential

equations of first order with constant coefficients and can be solved explicitly [18, 23]. In

order to obtain the distributions in x representation an inverse Mellin transformation must be

performed

Dj
h(x, t) =

∫

dn

2πi
x−n M j

h(n, t), (13)

where the integration runs along the imaginary axis to the right from all n singularities. This

can be done numerically. However the asymptotic behaviour can be estimated. Namely, with

the growth of t (Q2) the first term in eq. (6) becomes dominant 2 for finite x1 and x2 [23]. Thus

the two-parton distribution functions “forget” the initial conditions unknown a priori and the

correlations perturbatively calculated appear.

The asymptotic prediction “teaches” us a tendency only and tells nothing about the values

of x1, x2, t(Q
2) beginning from which the correlations are significant (the more so since the

asymptotic behaviour takes place over the double logarithm dimensionless variable t as a func-

tion of Q2). Naturally numerical estimations can give an answer to this specific question. We

do it using the CTEQ fit [22] for single distributions as an input in eq. (7). The nonperturba-

tive initial conditions Dj
h(x, 0) are specified in a parametrized form at a fixed low-energy scale

Q0 = µ = 1.3 GeV. The particular function forms and the value of Q0 are not crucial for the

CTEQ global analysis at the flexible enough parametrization, which reads [25]

xDj
p(x, 0) = Aj

0x
Aj

1(1 − x)Aj
2eAj

3
x(1 + eAj

4x)Aj
5. (14)

1This is the analogue of the momentum conserving phase space factor in eq. (2)
2Such domination is the mathematical consequence of the relation between the maximum eigenvalues λ(n)

in the moments representation (after Mellin transformation): λ(n1 +n2) > λ(n1)+λ(n2) in QCD at the large
n1, n2 (finite x1, x2), because λ(n) ∼ − ln(n), n ≫ 1.
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The independent parameters Aj
0, Aj

1, Aj
2, Aj

3, Aj
4, Aj

5 for parton flavour combinations uv ≡

u− ū, dv ≡ d− d̄, g and ū + d̄ are given in Appendix A of ref. [25]. To distinguish the ū and d̄

distributions the ratio d̄/ū is parametrized as a sum of two terms:

Dd̄
p(x, 0)/Dū

p (x, 0) = A0x
A1(1 − x)A2 + (1 + A3x)(1 − x)A4 (15)

with the coefficients A0, A1, A2, A3, A4 again from ref. [25]. The initial conditions for strange

quarks are assumed:

Ds̄
p(x, 0) = Ds

p(x, 0) = 0.2
(

Dū
p (x, 0) + Dd̄

p(x, 0)
)

.

The parton distribution functions Dj
p(x, t) at all higher Q(t) are determined from the input

initial conditions Dj
p(x, 0) by the Altarelli-Parisi evolution equations. The CTEQ Evolution

package [26] was used and adapted by us in order to obtain numerically single distributions

Dj
i (x, t) at all t and at the parton level also. We fixed the fundamental parameter of per-

turbative QCD, ΛQCD = 0.281 GeV, that is in accordance with the strong coupling constant,

αs(MZ) ≃ 0.2, at the Z resonance in one-loop approximation. Only the light quarks u, d, s

(nf = 3) are taken into account in the evolution equations and are treated as massless, as usual.

After that the triple integral (7) was calculated numerically for three values of Q = 5, 100, 250

GeV as a function of x = x1 = x2. To be specific we considered the double gluon-gluon distri-

bution function in the proton. In this case only the kernel Pg→gg can be taken into account as

giving the main contribution to the perturbative double gluon-gluon distribution. The remnant

terms of sum in eq. (7) are relatively small and can only increase the effect under consideration

because they are positive.

The results of numerical calculations are presented on fig. 1 for the ratio:

R(x, t) =
(

Dgg
p(QCD)(x1, x2, t)

/

Dg
p(x1, t)D

g
p(x2, t)(1 − x1 − x2)

2
)∣

∣

∣

x1=x2=x
. (16)

Here one should note that the momentum conserving phase space factor (1 − x1 − x2)
2 is

introduced in eq. (16) instead of (1 − x1 − x2) usually used. The reason is simple: this factor

was introduced in eq. (2), generally speaking, “by hand” in order to “save” the momentum

conservation law, i.e. in order to make the product of two single distributions is equal to zero

smoothly at x1 + x2 = 1. However the generalized QCD evolution equations demand higher

power of (1 − x1 − x2) at x1 + x2 → 1: only the phase space integrals in eqs. (6) and (7) give

1−x2
∫

x1

dz1

1−z1
∫

x2

dz2 = (1 − x1 − x2)
2/2.

In fact this power must depend on t increasing with its growth as this takes place for single

distributions at x → 1 [16, 27]. The asymptotic behaviour of two-particle fragmentation func-

tions at x1 + x2 → 1 was investigated, for instance, in ref. [28] with the similar result. Our
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numerical calculations support this assertion also: the power of (1− x1 − x2) for the perturba-

tive QCD gluon-gluon correlations is higher than 2 and increases with t(Q) as one can see from

fig. 1 However the introduced factor (1−x1 −x2)
2 has not an influence practically on the ratio

under consideration in the region of small x1, x2. And namely this region, in which multiple

interactions can contribute to the cross section visibly, is interesting from experimental point

of view. Fig. 1 shows that at the scale of CDF hard process (∼ 5 GeV) the ratio (16) is nearly

10% and increases right up to 30% at the LHC scale (∼ 100 GeV) for the longitudinal momen-

tum fractions x ≤ 0.1 accessible to these measurements. For the finite longitudinal momentum

fractions x ∼ 0.2 ÷ 0.4 the correlations are large right up to 90% . They become important in

more and more x region with the growth of t in accordance with the predicted QCD asymptotic

behaviour.

The correlation effect is strengthened insignificantly (up to 2%) for the longitudinal momen-

tum fractions x ≤ 0.1 when starting from the slightly lower value Q0 = 1 GeV (early used by

CTEQ Collaboration). We conclude also that R(x, t) → const at x → 0 most likely, calculating

this ratio (≃ 0.1) at xmin = 10−4.

Seemingly the correction to the double gluon-gluon distributions at the CDF scale can be

smoothly absorbed by uncertainties in the σeff increasing the transverse effective size rp by a

such way. But this augmentation is still not enough to solve a problem of the relatively small

value of rp with respect to the proton radius without nontrivial correlation effects in transverse

space [9, 10].

In summary, the numerical estimations show that the leading logarithm perturbative QCD

correlations are quite comparable with the factorized distributions. With increasing a number

of observable multiple collisions (statistic) the more precise calculations of their cross section

(beyond the factorization hypothesis) will be needed also. In order to obtain the more delicate

their characteristics (distributions over various kinematic variables) it is desirable to implement

the QCD evolution of two-parton distribution functions in some Monte Carlo event generator

as this was done for single distributions within, for instance, PYTHIA [29].
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Figure 1: The ratio of perturbative QCD correlations to the factorized component for the
double gluon-gluon distribution in the proton as a function of x = x1 = x2 for three values of
Q = 5(solid), 100(dashed), 250(dash-dotted) GeV.
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